Non-Calculator

Q1.

Here is the velocity-time graph of a car for 50 seconds.

(a) Work out the average acceleration during the 50 seconds.

Give the units of your answer.
\qquad
\qquad
\qquad
Answer \qquad
(b) Estimate the time during the 50 seconds when
the instantaneous acceleration = the average acceleration
You must show your working on the graph.
\qquad
Answer \qquad

Calculator

Q2.
A ball is thrown from a point 6 metres above the ground.
The graph shows the height of the ball above the ground, in metres.

Estimate the speed of the ball, in m / s, after 1 second.
You must show your working.
\qquad
\qquad
\qquad
\qquad
Answer \qquad m / s

Q3.

The height, h metres, of a particle at time, t seconds, is given by the function

$$
\begin{array}{ll}
h=0 & 0 \leq t<2 \\
h=(14-t)(t-2) & 2 \leq t \leq 10
\end{array}
$$

(a) Draw a graph to show the height of the particle in the first 10 seconds.

(b) By joining the points on the graph where $t=3$ and $t=7$ with a straight line, work out the average rate of change of height between 3 and 7 seconds.

Answer
m/s
(Total 5 marks)

Q4.

A container is filled with water in 5 seconds.

The graph shows the depth of water, $d \mathrm{~cm}$, at time t seconds.

(a) The water flows into the container at a constant rate.

Which diagram represents the container?
Circle the correct letter.

A

C

B

D

(b) Use the graph to estimate the rate at which the depth of water is increasing at 3 seconds.

You must show your working.
\qquad
\qquad
\qquad
\qquad
Answer \qquad cm / s

